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ABSTRACT
Many academic studies in the field of software testing rely on mu-
tation testing to use as their comparison criteria. However, recent
studies have shown that redundant mutants have a significant effect
on the accuracy of their results. One solution to this problem is to
use mutant subsumption to detect redundant mutants. Therefore, in
order to facilitate research in this field, a mutation testing tool that
is capable of detecting redundant mutants is needed. In this paper,
we describe how we improved our tool, LittleDarwin, to fulfill this
requirement.
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1 INTRODUCTION
Many academic studies on fault detection need to assess the quality
of their technique using seeded faults. One of the widely-used sys-
tematic ways to seed simulated faults into the programs is mutation
testing [5]. Mutation testing is the process of injecting faults into
software (i.e. creating a mutant), and counting the number of these
faults that make at least one test fail (i.e. kill the mutant). The pro-
cess of creating a mutant consists of applying a predefined transfor-
mation on the code (i.e. mutation operator) that converts a version
of the code under test into a faulty version. It has been shown that
mutation testing is an appropriate method to simulate real faults
and perform comparative analysis on testing techniques [2, 3, 10].
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There has been many studies to optimize the process of mutation
testing by following the maxim {do faster, do smarter, do fewer} [17].
In particular, do fewer aims to reduce the number of produced
mutants. There are several techniques that implement this logic
(e.g. selective mutation [13, 14, 16], and mutant sampling [20, 23–
25]). However, only recently the academics began to investigate
the threats to validity the redundant mutants introduce in software
testing experiments [18]. Papadakis et al. demonstrate that the
existence of redundant mutants introduces a significant threat by
“artificially inflating the apparent ability of a test technique to detect
faults” [18].

One of the recent solutions to alleviate this problem is to use
mutant subsumption [1]. Mutant A truly subsumes mutant B if and
only if all inputs that kill A also kill B. This means that mutant
B is redundant, since killing A is sufficient to know that B is also
killed. It is possible to provide a more accurate analysis of a testing
experiment by determining and discarding the redundant mutants.
However, it is often impossible to check mutants for every possi-
ble input to the program in practice. Therefore, as a compromise,
dynamic mutant subsumption is used instead [1]. Mutant A dynam-
ically subsumes mutant B with regards to test set T if and only if
there exists at least one test that kills A, and every test that kills A
also kills B. Given the fact that mutant subsumption only recently
has been at the center of attention, there are no mature tools that
can perform dynamic mutant subsumption analysis on real-life Java
programs. This, however, is necessary to facilitate further research
on the topic. Therefore we aim to fill this void by developing such
tool.

We used LittleDarwin1 mutation testing framework to imple-
ment the features needed to perform dynamic mutant subsumption
analysis. LittleDarwin is an extensible and easy to deploy muta-
tion testing tool for Java programs [22]. LittleDarwin has been
used previously in several other studies [20, 21], and it is shown
to be capable of analyzing large and complicated Java software
systems [19].

The rest of the paper is organized as follows: In Section 2, back-
ground information about mutation testing is provided. In Section 3,
the current state of the art is discussed. In Section 4, we provide
details on how LittleDarwin can help performing dynamic mu-
tant subsumption analysis. Finally, we present our conclusions in
Section 5.

2 BACKGROUND
The idea of mutation testing was first mentioned by Lipton, and
later developed by DeMillo, Lipton and Sayward [5]. The first im-
plementation of a mutation testing tool was done by Timothy Budd
in 1980 [4]. Mutation testing is performed as follows: First, a faulty

1https://littledarwin.parsai.net/
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Figure 1: An Example Mutated Method

version of the software is created by introducing faults into the sys-
tem (Mutation). This is done by applying a known transformation
(Mutation Operator) on a certain part of the code. After generating
the faulty version of the software (Mutant), it is passed onto the
test suite. If there is an error or failure during the execution of the
test suite, the mutant is marked as killed (Killed Mutant). If all tests
pass, it means that the test suite could not catch the fault, and the
mutant has survived (Survived Mutant) [9].

If the output of a mutant for all possible input values is the same
as the original program, it is called an equivalent mutant. It is not
possible to create a test case that passes for the original program
and fails for an equivalent mutant, because the equivalent mutant
is indistinguishable from the original program. This makes the
creation of equivalent mutants undesirable, and leads to false posi-
tives during mutation testing. In general, detection of equivalent
mutants is undecidable due to the halting problem [15]. Manual
inspection of all mutants is the only way of filtering all equivalent
mutants, which is impractical in real projects due to the amount of
work it requires. Therefore, the common practice within today’s
state-of-the-art is to take precautions to generate as few equivalent
mutants as possible, and accept equivalent mutants as a threat to
validity (accepting a false positive is less costly than removing a
true positive by mistake [6]).

Mutation Coveraдe =
Number o f killed mutants

Number o f all non-equivalent mutants
(1)

Mutation testing allows software engineers to monitor the fault
detection capability of a test suite by means of mutation coverage
(see Equation 1) [9]. A test suite is said to achieve full mutation test
adequacy whenever it can kill all the non-equivalent mutants, thus
reaching a mutation coverage of 100%. Such test suite is called a
mutation-adequate test suite.

3 STATE OF THE ART
Mutant subsumption is defined as the relationship between two
non-equivalent mutants A and B in which A subsumes B if and only
if all inputs that kill A is guaranteed to kill B [12]. The subsumption
relationship for faults has been defined by Kuhn in 1999 [11], but
its use for mutation testing has been popularized by Jia et al. for
creating hard to kill higher-order mutants [8]. Later on, Ammann et
al. tackled the theoretical side of mutant subsumption [1]. In their
paper, Ammann et al. define dynamic mutant subsumption, which
redefines the relationship using test cases. Mutant A dynamically

Table 1: Range of Input Values that Kill Mutants of the Ex-
ample Mutated Method (left), DMSG for the Example Mu-
tated Method (right)

Mutants Range of a Range of b
M0 ∅ ∅

M1 (−∞,∞) − {0} (−∞, 0)
M2 (−∞,∞) − {0} (−∞,∞) − {0}
M3 (−∞,∞) − {0} (−∞,∞) − {0}
M4 (−∞,∞) − {0} (−∞, 0)
M5 (−∞,∞) − {0} (−∞,∞)

M6 (−∞,∞) − {0} (−∞,∞) − {0}
M7 ∅ ∅

{2,3,6}

{5}

{1,4}

subsumesMutant B if and only if (i) A is killed, and (ii) every test that
kills A also kills B. Kurtz et al. [12] use the notion of dynamic mutant
subsumption graph (DMSG) to visualize the concept of dynamic
mutant subsumption. Each node in a DMSG represents a set of all
mutants that are mutually subsuming. Edges in a DMSG represent
the dynamic subsumption relationship between the nodes. They
introduce the concept of static mutant subsumption graph, which
is a result of determining the subsumption relationship between
mutants using static analysis techniques.

Figure 1 shows a Java method and its set of mutants. This method
takes a and b as input, and returns a × b as output. To do this, a is
added b times. If b is negative, both a and b are negated so that b
becomes positive. Table 1 shows the range of input values that kills
each mutant. As the table shows, M0 and M7 are equivalent mu-
tants, since the change they introduce does not impact the program
semantically. M1 and M4 are killed by the same range of inputs. The
same holds true for M2, M3, and M6. It can be seen that {M1,M4}
truly subsume {M2,M3,M6}, since any input that kills M1 or M4,
also kills M2, M3, and M6; however, the opposite does not hold.
Also, {M2,M3,M6} truly subsume {M5} for the same reason. Using a
test suite that includes a test case from each of the input ranges in
Table 1, it is possible to draw the DMSG for this method.

The main purpose behind the use of mutant subsumption is to
reliably detect redundant mutants, which create multiple threats
to the validity of mutation testing [18]. This is often done by de-
termining the dynamic subsumption relationship among a set of
mutants, and keeping only those that are not subsumed by any
other mutant. In our example, keeping only M1 (or M4) suffices,
since it subsumes all the other mutants.

4 DYNAMIC MUTANT SUBSUMPTION
ANALYSIS WITH LITTLEDARWIN

Figure 3 shows the input and output of LittleDarwin’s dynamic
mutant subsumption (DMS) component. To facilitate dynamic mu-
tant subsumption analysis in LittleDarwin, we retain all the output
provided by the build system for each mutant. As a result, we can
parse this output and extract useful information, e.g. which test
cases kill a particular mutant. LittleDarwin’s DMS component can
then use this information to determine dynamic subsumption rela-
tion between each mutant pair. This component then outputs the
results in two different ways: (i) the dynamic mutant subsumption
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{56}

{50,61}

{51,54,58}

{45,47}

{116,129}

{52} {124,131}

{34}

{27,28} {78,90,97,147}{26,29,32,33,38}

{25}

{72,81,87,110,151}

{64} {96,119,123,125}{156}{60} {113}

{84,136}

{35}

{23,40,74,77,120,138}

{49,62}

{46}{158}

{159}

{114}

{24,31,37,39,68,71,75,85,101,105,109,112,122,128,139,145,148}

{53} {57}{59}

{44}

{2}

{20}

{132}{55}

{157}

{0,1,3}

{127}{99,146,153} {30,36,70,94,144}{65,86,117,141,150,152}

{41,42}

{76}

Figure 2: Dynamic Mutant Subsumption Graph for JTerminal

Figure 3: Dynamic Mutant Subsumption Component I/O

Figure 4: Mutants 45 and 56 of JTerminal

graph, to visualize the subsumption relation, and (ii) a detailed re-
port is generated in CSV2 format that contains all the information
processed by the DMS component. For each mutant, mutant ID,
mutant path, source path, mutated line number, whether it is a sub-
suming mutant, number of failed tests, the mutants it subsumes, the
mutants that it is subsumed by, and the mutants that are mutually
subsuming with it are provided in this report. Since LittleDarwin
is a Java mutation testing framework, the application of the DMS
component is also restricted to Java programs.

To showcase the ability of LittleDarwin in performing dynamic
mutant subsumption analysis, we use JTerminal3 as a subject. We
improved the test suite of JTerminal by automatically generating
test cases using EvoSuite [7]. The information about characteris-
tics of JTerminal is shown in Table 2. The DMSG for JTerminal is
depicted in Figure 2. In this figure, each number represents a single
2Comma-separated Values
3https://www.grahamedgecombe.com/projects/jterminal

Figure 5: The Test that Kills Mutant 45, but Not Mutant 56

killed mutant, each node represents a group of mutants that are
killed by exactly the same set of test cases, and each edge shows the
dynamic subsumption relationship between each node where the
node at the end is subsumed by the node at the start. The survived
mutants are not shown in this figure. The double-circled nodes
contain the subsuming mutant groups. In order to remove the re-
dundant mutants, one only needs to keep one mutant from each
subsuming mutant group and discard the rest.

Take M45 and M56 as an example. According to the DMSG, M56
subsumes Mutant M45. Using the CSV report, we can locate the
actual mutation of the source code (Figure 4). Both M45 and M56
belong to method parse of class AnsiControlSequenceParser,
and mutate the same statement on line 99. M45 acts as a negation
of the conditional statement. This means that any input character
(except -1) that used to trigger "else if" and "else", now trigger this
branch. Since this branch contains a "break" statement, it avoids
the rest of the iteration of the loop to be executed. If the input is -1,
the "else" branch would be executed, which wrongfully appends -1
to "text". M56, however, changes only two special cases. If the input
is +1, the "if" branch would be executed, and the current iteration
breaks. If the input is -1, the same thing as M45 happens. For any
other input, the program executes as it should. This means that
M56 truly subsumes M45. Figure 5 shows the test case that kills
M45, but not M56. The input value here is a single control sequence,
which is neither -1 or +1, and therefore cannot kill M56. However,
since it should have been handled by "else if" branch and M45 does
not allow that, it kills M45. Hence, in Figure 2 (on the left side) , we
can see that M56 dynamically subsumes M45. Analysis such as this

3
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Table 2: JTerminal Software Information

Project Ver. Size (LoC) #C TS SC BC MC #M
Prod. Test

JTerminal 1.0.1 687 428 8 2 66% 56% 60.0% 160

Acronyms: Version (Ver.), Line of code (LoC), Production code (Prod.),
Number of commits (#C), Team size (TS), Statement coverage (SC),

Branch coverage (BC), Mutation coverage (MC), Number of Mutants (#M)

allows researchers to understand the relations between the mutants
and reduce the effects of redundant mutants on their results.

5 CONCLUSION
Many academic studies in the field of software testing rely on mu-
tation testing to use as their comparison criteria, and the existence
of redundant mutants is a significant threat to their validity. We
developed a component for our mutation testing tool, LittleDar-
win, to facilitate the detection of redundant mutants using dynamic
mutant subsumption analysis. We performed dynamic mutant sub-
sumption analysis on a small, real-world project to demonstrate the
capabilities of our tool. Using our tool, it is possible to detect and
filter out redundant mutants, and help in increasing the confidence
in results of experiments using mutation testing as a comparison
criteria.
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